3.7.51 \(\int \frac {1}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx\) [651]

3.7.51.1 Optimal result
3.7.51.2 Mathematica [A] (verified)
3.7.51.3 Rubi [A] (verified)
3.7.51.4 Maple [B] (warning: unable to verify)
3.7.51.5 Fricas [C] (verification not implemented)
3.7.51.6 Sympy [F]
3.7.51.7 Maxima [F]
3.7.51.8 Giac [F]
3.7.51.9 Mupad [F(-1)]

3.7.51.1 Optimal result

Integrand size = 25, antiderivative size = 142 \[ \int \frac {1}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=-\frac {2 b \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{a d \sqrt {a+b \sec (c+d x)}}+\frac {2 E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{a d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}} \]

output
-2*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x 
+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c) 
^(1/2)/a/d/(a+b*sec(d*x+c))^(1/2)+2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d 
*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d 
*x+c))^(1/2)/a/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)
 
3.7.51.2 Mathematica [A] (verified)

Time = 3.31 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.68 \[ \int \frac {1}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\frac {2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \left ((a+b) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )-b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )\right ) \sqrt {\sec (c+d x)}}{a d \sqrt {a+b \sec (c+d x)}} \]

input
Integrate[1/(Sqrt[Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]),x]
 
output
(2*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*((a + b)*EllipticE[(c + d*x)/2, (2*a 
)/(a + b)] - b*EllipticF[(c + d*x)/2, (2*a)/(a + b)])*Sqrt[Sec[c + d*x]])/ 
(a*d*Sqrt[a + b*Sec[c + d*x]])
 
3.7.51.3 Rubi [A] (verified)

Time = 1.04 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {3042, 4349, 3042, 4343, 3042, 3134, 3042, 3132, 4345, 3042, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4349

\(\displaystyle \frac {\int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}}dx}{a}-\frac {b \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}}dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}-\frac {b \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\)

\(\Big \downarrow \) 4343

\(\displaystyle \frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \cos (c+d x)}dx}{a \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b}}-\frac {b \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b}}-\frac {b \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}dx}{a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\)

\(\Big \downarrow \) 4345

\(\displaystyle \frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \cos (c+d x)}}dx}{a \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}}dx}{a \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {b \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{a \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {2 \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {2 b \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{a d \sqrt {a+b \sec (c+d x)}}\)

input
Int[1/(Sqrt[Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]),x]
 
output
(-2*b*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + 
 b)]*Sqrt[Sec[c + d*x]])/(a*d*Sqrt[a + b*Sec[c + d*x]]) + (2*EllipticE[(c 
+ d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(a*d*Sqrt[(b + a*Cos[c 
+ d*x])/(a + b)]*Sqrt[Sec[c + d*x]])
 

3.7.51.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 4343
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[Sqrt[a + b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*S 
qrt[b + a*Sin[e + f*x]])   Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[{a 
, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4345
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[Sqrt[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/S 
qrt[a + b*Csc[e + f*x]])   Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[ 
{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4349
Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_ 
.) + (a_)]), x_Symbol] :> Simp[1/a   Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Cs 
c[e + f*x]], x], x] - Simp[b/(a*d)   Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Cs 
c[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 
3.7.51.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(738\) vs. \(2(188)=376\).

Time = 6.53 (sec) , antiderivative size = 739, normalized size of antiderivative = 5.20

method result size
default \(\frac {2 \left (\sqrt {\frac {a -b}{a +b}}\, a \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-\sqrt {\frac {a -b}{a +b}}\, b \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+\sqrt {-\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{a +b}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right ) a -\sqrt {-\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{a +b}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \operatorname {EllipticE}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right ) a +\sqrt {-\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{a +b}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \operatorname {EllipticE}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right ) b -\sqrt {\frac {a -b}{a +b}}\, a \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-\sqrt {\frac {a -b}{a +b}}\, b \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right ) \sqrt {\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}}{d \sqrt {\frac {a -b}{a +b}}\, a \left (a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b \right ) \sqrt {-\frac {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}}\) \(739\)
risch \(-\frac {i \left (a \,{\mathrm e}^{2 i \left (d x +c \right )}+2 b \,{\mathrm e}^{i \left (d x +c \right )}+a \right ) \sqrt {2}}{a d \sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) \sqrt {\frac {a \,{\mathrm e}^{2 i \left (d x +c \right )}+2 b \,{\mathrm e}^{i \left (d x +c \right )}+a}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}-\frac {i \left (-\frac {2 \left (a \,{\mathrm e}^{2 i \left (d x +c \right )}+2 b \,{\mathrm e}^{i \left (d x +c \right )}+a \right )}{a \sqrt {{\mathrm e}^{i \left (d x +c \right )} \left (a \,{\mathrm e}^{2 i \left (d x +c \right )}+2 b \,{\mathrm e}^{i \left (d x +c \right )}+a \right )}}+\frac {2 \left (b +\sqrt {-a^{2}+b^{2}}\right ) \sqrt {\frac {\left ({\mathrm e}^{i \left (d x +c \right )}+\frac {b +\sqrt {-a^{2}+b^{2}}}{a}\right ) a}{b +\sqrt {-a^{2}+b^{2}}}}\, \sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}-\frac {-b +\sqrt {-a^{2}+b^{2}}}{a}}{-\frac {b +\sqrt {-a^{2}+b^{2}}}{a}-\frac {-b +\sqrt {-a^{2}+b^{2}}}{a}}}\, \sqrt {-\frac {{\mathrm e}^{i \left (d x +c \right )} a}{b +\sqrt {-a^{2}+b^{2}}}}\, \left (\left (-\frac {b +\sqrt {-a^{2}+b^{2}}}{a}-\frac {-b +\sqrt {-a^{2}+b^{2}}}{a}\right ) \operatorname {EllipticE}\left (\sqrt {\frac {\left ({\mathrm e}^{i \left (d x +c \right )}+\frac {b +\sqrt {-a^{2}+b^{2}}}{a}\right ) a}{b +\sqrt {-a^{2}+b^{2}}}}, \sqrt {-\frac {b +\sqrt {-a^{2}+b^{2}}}{a \left (-\frac {b +\sqrt {-a^{2}+b^{2}}}{a}-\frac {-b +\sqrt {-a^{2}+b^{2}}}{a}\right )}}\right )+\frac {\left (-b +\sqrt {-a^{2}+b^{2}}\right ) \operatorname {EllipticF}\left (\sqrt {\frac {\left ({\mathrm e}^{i \left (d x +c \right )}+\frac {b +\sqrt {-a^{2}+b^{2}}}{a}\right ) a}{b +\sqrt {-a^{2}+b^{2}}}}, \sqrt {-\frac {b +\sqrt {-a^{2}+b^{2}}}{a \left (-\frac {b +\sqrt {-a^{2}+b^{2}}}{a}-\frac {-b +\sqrt {-a^{2}+b^{2}}}{a}\right )}}\right )}{a}\right )}{a \sqrt {a \,{\mathrm e}^{3 i \left (d x +c \right )}+2 b \,{\mathrm e}^{2 i \left (d x +c \right )}+{\mathrm e}^{i \left (d x +c \right )} a}}\right ) \sqrt {2}\, \sqrt {{\mathrm e}^{i \left (d x +c \right )} \left (a \,{\mathrm e}^{2 i \left (d x +c \right )}+2 b \,{\mathrm e}^{i \left (d x +c \right )}+a \right )}}{d \sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) \sqrt {\frac {a \,{\mathrm e}^{2 i \left (d x +c \right )}+2 b \,{\mathrm e}^{i \left (d x +c \right )}+a}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}\) \(819\)

input
int(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
2/d/((a-b)/(a+b))^(1/2)/a*(((a-b)/(a+b))^(1/2)*a*(1-cos(d*x+c))^3*csc(d*x+ 
c)^3-((a-b)/(a+b))^(1/2)*b*(1-cos(d*x+c))^3*csc(d*x+c)^3+(-(a*(1-cos(d*x+c 
))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-co 
s(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+ 
c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a-(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2- 
b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d* 
x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-( 
a+b)/(a-b))^(1/2))*a+(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2 
*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*El 
lipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2)) 
*b-((a-b)/(a+b))^(1/2)*a*(-cot(d*x+c)+csc(d*x+c))-((a-b)/(a+b))^(1/2)*b*(- 
cot(d*x+c)+csc(d*x+c)))*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c)) 
^2*csc(d*x+c)^2-a-b)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)/(a*(1-cos(d* 
x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(-((1-cos(d*x+c) 
)^2*csc(d*x+c)^2+1)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)
 
3.7.51.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 355, normalized size of antiderivative = 2.50 \[ \int \frac {1}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\frac {2 i \, \sqrt {2} \sqrt {a} b {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) - 2 i \, \sqrt {2} \sqrt {a} b {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + 3 i \, \sqrt {2} a^{\frac {3}{2}} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - 3 i \, \sqrt {2} a^{\frac {3}{2}} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right )}{3 \, a^{2} d} \]

input
integrate(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")
 
output
1/3*(2*I*sqrt(2)*sqrt(a)*b*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8 
/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2* 
b)/a) - 2*I*sqrt(2)*sqrt(a)*b*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2 
, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 
 2*b)/a) + 3*I*sqrt(2)*a^(3/2)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8 
/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8 
/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2* 
b)/a)) - 3*I*sqrt(2)*a^(3/2)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/2 
7*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/2 
7*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b) 
/a)))/(a^2*d)
 
3.7.51.6 Sympy [F]

\[ \int \frac {1}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {a + b \sec {\left (c + d x \right )}} \sqrt {\sec {\left (c + d x \right )}}}\, dx \]

input
integrate(1/sec(d*x+c)**(1/2)/(a+b*sec(d*x+c))**(1/2),x)
 
output
Integral(1/(sqrt(a + b*sec(c + d*x))*sqrt(sec(c + d*x))), x)
 
3.7.51.7 Maxima [F]

\[ \int \frac {1}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {1}{\sqrt {b \sec \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(1/(sqrt(b*sec(d*x + c) + a)*sqrt(sec(d*x + c))), x)
 
3.7.51.8 Giac [F]

\[ \int \frac {1}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {1}{\sqrt {b \sec \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(1/(sqrt(b*sec(d*x + c) + a)*sqrt(sec(d*x + c))), x)
 
3.7.51.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

input
int(1/((a + b/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(1/2)),x)
 
output
int(1/((a + b/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(1/2)), x)